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The new iterative numerical algorithm of the pulse-spectrum technique (PST) is extended 
and developed to solve inverse problems of two-dimensional linear wave equations. It has the 
practical advantages of having the necessary data measured on a portion of the boundary only 
and no geometric limitation on the testing objects. Numerical simulations on several simple 
examples are carried out to test the feasibility and to study the general characteristics of this 
technique without the real measurement data. It is found that PST does give excellent results 
even with a very coarse computational grid and it is as robust as in the one-dimensional case. 

INTRODUCTION 

Inverse problems of wave equations involve the reconstruction of the coefficients 
characterizing the inhomogeneity of the propagating medium from experimental 
measured wave motions. Usually the solution of an inverse problem is not unique and 
does not depend continuously on the given data. Its applications can be found in 
many areas of engineering and geophysics, e.g., nondestructive evaluation of 
materials in engineering and the determination of the Earth’s interior structure from 
reflection seismic data in geophysics. For the one-dimensional inverse problems, 
although there are many different methods, very few of them can be generalized in 
practice to solve higher dimensional inverse problems. In this paper, the pulse- 
spectrum technique (PST) is extended and further developed to solve inverse 
problems of two-dimensional linear wave equations in an arbitrary finite domain. 

The basic idea of PST is that data are measured in the time domain with compact 
support and the synthesis of the unknown coefficient is carried out numerically in the 
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complex frequency domain by an iterative algorithm. The PST was first introduced 
by Tsien and Chen [I] for solving an idealized velocity inverse problem in fluid 
dynamics. Then it was further developed by Chen and Tsien [2] to have the 
capability of handling noisy, poorly distributed, and inadequately measured data. It 
also was used to solve an inverse problem in electromagnetic wave propagation by 
Tsien and Chen [3]. Later it was extended successfully to solve inverse problems of a 
nonlinear acoustic wave equation by Hatcher and Chen [4]. Recently it has been 
used successfully by Chen and Weng [5] to synthesize nonuniform transmission lines. 
Moreover, the discretized version of this iterative algorithm under idealized 
conditions has been proved to converge quadratically [6], which is quite efficient 
from the numerical computation point of view. In a different direction, the PST has 
also been modified to solve one-dimensional and two-dimensional inverse problems of 
linear diffusion equations with great success [ 7, 81. 

In this paper, PST is presented and extended for solving inverse problems of a two- 
dimensional linear wave equation and its feasibility is demonstrated by simple 
examples with calculations done on very coarse computational grids. No claims that 
either the results here are optimal or that a completely adaptable computer code has 
been developed are made here. However, it is found that PST fares very well with 
regard to the following four practical criteria for the evaluation of any numerical 
method: 

(a) Universality criterion: Can a numerical method which is effective in one- 
space-dimensional problems be extended with similar success into higher-space- 
dimensional applications? Can a solution method which is effective for solving 
inverse problems of one type of equations, e.g., hyperbolic or parabolic type, be 
extended to solve the inverse problems of the other type of partial differential 
equations with similar success and minimum efforts? 

(b) Economy of data acquisition criterion: The numerical method should be 
able to keep the difficulties and the cost expenditure of acquiring or measuring the 
necessary data for a successful calculation to minimum. 

(c) Economy of programming effort criterion: The numerical method should 
be as close to the nondedicated program as possible, for existing practices of 
programming new dedicated numerical methods for every special types of problems 
can be unacceptably costly in many practical circumstances. Furthermore, the 
computer code should also contain as many as possible of the modules where the 
canned subroutines can be readily called upon. 

(d) Economy of computing cost criterion: The numerical method should keep 
the cost of IO and CPU times and memory storage to minimum. 

For simplicity, the formulation of the inverse problem of a linear two-dimensional 
wave equation is presented and the basic numerical algorithm of PST is given in the 
next section. Then numerical simulations are carried out to test the feasibility and to 
study the intrinsic characteristics of this numerical algorithm without the real 
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measurement data. Finally, a comprehensive discussion of the numerical results, their 
implication in actually implementing this computational algorithm, and the merits of 
PST are given. 

NUMEFUCAL ALGORITHM (PST) 

Consider the following initial-boundary value problem of a two-dimensional linear 
wave equaion, 

cY{k(x, y) au/ax}/ax + 3{k(x, y) au/ay}/ay - pa%/at* 
= 0, (x,y)EG?, o<t<co, 

u(x, y, 0) = &4(x, y, oyat = 0, 
@u/an + aA u)lr, =fA(xl Y, 0, A = 1, 2 )...) ‘4, 

(1) 

where 0 is a bounded region in xy space and r = r, + T2 + . . . + r,, is the boundary 
of R. 

Here the inverse problem is to determine the unknown coefficient k(x, y) from the 
known coefficient p, the known boundary conditions fA(x, y, t), ,I = 1, 2,..., A, and the 
additionally measured auxiliary data, 

u (T = q-G Y> 07 (2) 

where f is a portion of r, on which u is not given by (l), and both theJI(x, y, t)‘s 
and h(x, y, t) are Laplace transformable. 

The PST calls for the Laplace transformation of (1) and (2) so that the entire 
system is transformed from the time domain to the complex frequency domain, and 
the corresponding system is 

i?{k(x, y) av/ax}/ax + f3(k(x, y) au/ay}/ay - ps*v = 0, 

@/an + aA o)lr, = F,(x, Y, s), A = 1) 2 )...) A, 

(4 Y) E .R, 
(3) 

fJ Ip = H(& Y, s>, (4) 

where V(X, y, s), F,(x, y, s), and H(x, y, s) are the Laplace transformations of 
4x, Y, 0, fA(x, Y, t), and h(x, Y, t), respectively. 

Now, the inverse problem is to determine k(x, y) from p, FA(x, y, s), A = 1,2 ,..., .4, 
and H(x, y, s). 

The iterative numerical algorithm begins by setting 

V tl+1= v,+~v,, k,+,=k,+dk,, n = 0, 1) 2, 3 ,...) (5) 

m/50/2-2 
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where S(x, y) is the initial guess for the unknown coefficient k(x, y), )( k,() > )I 6k,jI 

and ll~nll > llhzll~ and k,(, = kl,. Upon substituting (5) into (3) and neglecting terms 
of order a2 and higher, one obtains a system for u,,, 

~(k,,&,,/c?x)/~x + cT(k,&,/cTy)/i?y - ps2v, = 0, 

(av,/an + 01A v”)lrA = F,(x, y, s), 

tx, Y) E a 

A = 1) 2 )...) A) 
(6) 

and a system for au,,, 

B(k,86v,/;ax)/~x + 3(k,c%v,/LJy)/~y - ps26v, 

= -i@k,,~v,/c?x)/~x - l@k, i?v,@y)/c3y, (7) 

(asv”/an + a, 6v,)lrA = 0, 1 = 1, 2 )...) A. 

By using the method of Green’s function, elliptic partial differential equation (7) 
can be changed to a Fredholm integral equation of the first kind which relates 
6k,(x, Y) to 6v,(x,y, s) as 

/.I G,(x,y, x’, y’, s){a(sk,avn/8x’)/8x’ + cY(6k,~v,/~y’)/cYy’} dx’dy’ 
n 

= -~Un(X, y, s), (8) 

where G,(x, y, x’, y’, s) is the Green’s function of the differential operator in (7). 
Moreover, v, + , (x, y, s) at the right hand side of (8) can be replaced by v(x, y, s). 
Upon setting (x, y) at f, one obtains from (4) and (8) a Fredholm integral equation 
of the first kind for Sk,(x, y) as 

II GnJT {~(6k&,@x’)/i?x + 3(6k,Bv,/8y’) 8~‘) dx’ dy’ 
R 

= -m, Y, s)lp + v, lp (9) 

or defined as 

11 K,,(f, s, x’, y’) Sk, dx’ dy’ = g,,(p, s). 
0 

(9’) 

Equations (5), (6), and (9) form the basic structure for each iteration in the 
iterative numerical algorithm of PST. First, a numerical integration subroutine is used 
to evaluate the Laplace transforms F,(x, y, s) and H(x, y, s) at s = s,, 
o = 1, 2, 3,..., C. Then these discrete values will be used to solve (6) and (9) 
numerically. 

Boundary value problem (6) and the Green’s function of (7) can be solved 
numerically by simply using the following first-order finite difference method. 
Assuming that R can be approximated by a collection of small quadrilaterals 
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(triangles as a special case) where the ratio of the maximum dimension to the 
minimum dimension is of order one and each computational grid point is denoted by 
a pair of numbers (x, y), the finite difference approximation at an interior point (Xi, 
yj) is derived by considering the area integration of an element area centered at (i, j) 
(Fig. 1) as 

lj 

{(k,au,/ax)/ax + t3(k,,ib,/ay)/ay - s,v,\ dx dy = 0. (10) 
*ij 

By Green’s formula, (10) becomes 

G fr, jr, kdv,lan 4 - jjQ-, s,vn dx dy = 0. 
U 

The line integral of (11) can be approximated by 

j 

k&,/an dY - kni,j+knt+l,j Vni+l,j-Vni.j 

rijl 
2 cos 8, I Y(i.j)Ci+ I .A 

vni,j t I - vnij- I - 
a, 

sin 8, y,, 
i 

I 
k, av,/an dy- ktti.j + k”i.j t I 

I 
Vni,j t I - Vni.j 

rij2 
2 cos e, Y(i.j+ 1Hi.j) 

vni-I,j-UnitI.j - 
2Yl 

sin 0, y2, 
I 

I 
k,av,jan dY - 

k,i,j+ktii-l,j Vni-l,j-Vni,j 

rij3 
2 cos 6, I Yfi- I ..i)li.,i) 

vni j- - ’ I - vni,j+ 1 
2Y, 

sin 4 75, 
I 

I 
k, aV,,/an dY - kni,j + kni,j - 1 Vni.j - 1 - uni.j 

rij4 
2 cos 8, I YCi,,i- IHi. .A 

Yni+Ij-vni-l.j 

2Y.4 

and the area integral of (I 1) can be approximated by 

(11) 

(12) 

where the 0’s are the angles between the normal vectors and local axes of the 
computational grid measured counterclockwise (Fig. 1); the y,‘s are the lengths of the 
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FIG. 1. Computational grid of the finite difference method at an interior point (i, j). 

rijts; Y(i,j)@.q) is the distance between (i,j) and (p, q); and Ai,i is the area of the small 
quadrilateral a,. 

At the boundary, the normal derivative is approximated by a different finite 
difference scheme which does not use the phantom zones. Assuming that p = 1 
corresponds to the boundary (Fig. 2), the approximation is 

av,/an Ii- - 
4v n2.q - %I*,9 - vn3,ll cos 8 

Y(I,q)(2,q) + Y(2,q)(3.q) 

+ v,1,q+ 1 - vn1,9-I sin 8. 
Y(l,q)(l.q+l) + YCId-l)(l,9) 

P=2 P=3 

(14) 

I 
X 

FIG. 2. Computational grid for the finite difference approximation of the normal derivative at a 
boundary point (1,9). 
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The Green’s function of (7) satisfies (10) also except that the right-hand side 
contains an additional term 

11 
diY(i.j)(p.Q) } dxdy= 1, for (i,j) = (P, 91, 

Rii 
= 0, for (&A Z (P, s>. 

(15) 

Hence the discretized u,(x, y, S) and G,(x, y, x’, y’, s) satisfy the same linear algebraic 
system except with a different right-hand side. For computational efficiency, one can 
solve for v,(x, y, ~~7) and G,(f, x’, y’, so) simultaneously by solving the following 
linear system, 

A,#, 7 so> - {V,(s,), GAP:, so>1 = P@,h C@:, 4 1, (16) 

where A,(k,, s,) is the known pentadiagonal matrix from discretizing elliptic partial 
differential equation (6), V,(s,) is the vector with all u,~,~(s,)‘s as its components, 
G,(F, s,) is the vector with all G,(f, x[ , yj , s,)‘s as its components, the known vector 
B(s,) comes from the boundary condition of (7), and the known vector C(f, so) 
comes from the boundary condition of (7) and the location of the Dirac delta 
function. 

The Fredholm integral equation of the first kind (9) can be discretized by simply 
using the rectangle rule and the derivatives in the integrand are approximated by the 
following finite difference approximation, 

ask,- 1 

I 
dkni+ I,j - dkni- 1.j 

ax’ sin(4ij- Wij) Y(i,j)(i+ 1.j) + Y(i,j)(i- 1.j) 

sin Qij 

akni,j+ t - akni,j- 1 - 
Y(i.j)(i,j+ I) + Y(i,.i)Ci.j-1) 

sin V/ii , 
I 

ask,_ 1 
ay’ sin(9ij - Wij> I 

-Jkni + 1 ,j + akni - 1 ,j 
(17) 

Y(i,j)(i+ 1.j) + Y(i.j)(i- I.,i) 

cos q$i 

dkni,j+ 1 - dkni.j- 1 
Y(i,j)(i,j+ I) + Y(i.j)(i,j- I) 

cos V/ii 7 

i 

where 4ij and wij are the average angles of the local computational grid coordinates 
with respect to the x-axis (Fig. 3). 

In a similar manner, the partial derivatives &,/ax’, &Jay’, a’v,/ax”, and 
a2v,/ay’2 are approximated by the same central difference scheme. Hence integral 
equation (9) is reduced to a linear algebraic system, 

M,(v, 3 G,, so> . ~K,,(x, Y) = S,(s,), (18) 

where the known matrix M,,(vn, G,, s,) comes from the discretization of the integral 
and it is an ill-conditioned full matrix with each row containing a different s,, the 
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(I-1,J) 

I 
(I,J-1) 

FIG. 3. Definitions of $,j and wi, in the finite difference approximation of derivatives in the integrand 

of the integral equation at (i,j). 

unknown vector GK,(x, y) consists of all dk,,,, as its components, and the known 
vector S,(s,) comes from the discretization of the right-hand side of (9) with 
components containing the corresponding complex frequency parameters s,,, 
CJ = 1, 2, 3 )...) Jr. 

Since A,, is a symmetric, positive definite, narrow banded, and well-conditioned 
matrix, (16) can be solved by any modern efficient sparse matrix technique. However, 
M, is either a rectangular matrix or an ill-conditioned square matrix; therefore 
Tikhonov’s regularization method with second-order stabilizers 191 is used to solve 
(18). For (9’) the functional to be minimized is 

IInitial gues;: k,(x,y).I 

By using the finite difference method (11) .( 12) ,( 13) 

and (14), one solves the boundary value problem (6) and 

By using the Tikhonov's regulariration method, one I 
solves (18), the discrete version of the Fredholm integral 

equation of the first kind (9) with discrete values of s. 

to obtain 6ko(x,y). 

J 

I 

From (5). one obtains kI(x,y). 

+ 

SCHEME 1 
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K,(f, s, x’, y’) 6k, dx’ dy’ - g,(F, s) ds 
n 

(19) 

with qo(x, y) > 0, q,(x, y) > 0, and q2(x, y) > 0 continuous. 
The essence of the first cycle of iteration is given in Scheme 1 and the procedure 

for other cycles is exactly the same. It is important to notice that each cycle of 
iteration consists basically of first solving direct boundary value problem (6) and the 
Green’s function of (7) Z times and then solving the Fredholm integral equation of 
the first kind (9) once. 

NUMERICAL SIMULATION 

In order to test the feasibility and to study the general characteristics of the PST 
computational algorithm for solving two-dimensional inverse problems of the linear 

0 1.3 X 

U 0.6 0.7 
u=o /I 

. . . . 
I 

h///J\ 

-Lo L 

t/ \/ / 

FIG. 4. The geometry of R and the boundary conditions are shown in the figure of the upper 
hand corner. A rectangular pulse of unit strength and duration 0.5 is applied where indicated by 
arrows and /X(X, y, t) is measured at x’s; Ax = Ay = 0.1. Comparison of the calculated k3(x. u) ( ... ) 
the exact k*(x, y) (-) with the initial guess k,(x, y) (---) is also shown. 

left- 
the 
and 
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wave equation without real measurement data, the following numerical simulation 
procedure is carried out: 

First, one chooses a k*(x, y) which is supposed to represent the correct unknown 
coefficient k(x, y) and one also chooses the boundary functions JA(x,yr t), 
A = 1,2,..., A, which are supposed to represent a part of the measured data. Their 
Laplace transforms F,(x, y, s) are numerically computed for a chosen discrete set of 
s, {sv}, u = 1, 2, 3 )...) Z. Then boundary value problem (3) is solved by using the 
finite difference method (1 l)-( 14); thus one generates the rest of the supposedly 
measured auxiliary data H(x, y, sO)lr, u = 1, 2, 3 ,..., ,Z. Next, k,(x, y) is assumed. 
Hence upon solving (5), (6), and (9) numerically, k,(x, y) is obtained. Then in a 
similar manner k,(x,~) can be obtained. One continues this procedure until finally a 
numerical limit kN(x,y) is reached. Other than the truncation, round-off, numerical 
integration, and finite difference approximation errors in both generating the 
numerical data and computing k,(x, y), any norm of k*(x, y) - k,(x, I’) can be used 
as a criterion for evaluating the performance of the computational algorithm of PST. 

The numerical simulation here is carried out for a class of k*(x, y) and k,(x, y). To 
demonstrate the capability of the computational algorithm of PST to handle the 
general geometry of the inverse problem, rectangles, quadrilaterals, and triangles are 
used for the domain 0 and various functions with different geometry are used for 
k*(x, y). For reasons of economy, very coarse computational grids are used in our 
computation. For simplicity, homogeneous boundary conditions are used everywhere 
except that a square pulse is applied to a small portion of the boundary r and s = cr. 

1.0 X 

FIG. 5. Same description as that of Fig. 4. 



bU/bN = 0 - 

++~---+ 

FIG. 6. Same description as that of Fig. 4 except the triangular zones. 

0 1.0 Y 
FIG. 7. The geometry of Q and the boundary conditions are shown in the figure of the upper left- 

hand corner. The same rectangular pulse is applied where indicated by the arrows and h(x, y, I) is 
measured at x’s, Ax = Ay = 0.143. Comparison of the calculated k,(x, y) (...) and the exact k*(x, y) 
(-) with the initial guess k,(x, y) (---) is also shown. 
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;:;w c 

'0 1,O Y 
FIG. 8. Same description as that of Fig. 7. 

FIG. 9. The geometry of 0, the boundary conditions, and the computational grid are shown in the 
figure of the upper left hand corner. The same rectangular pulse is applied as indicated by the arrows 
and h(x,y, I) is measured at x’s, Comparison of the calculated k,(x,y) (.. .) and the exact k*(x,v) (-) 
with the initial guess k&y) (---) is also shown. 
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FIG. 10. Same description as that of Fig. 9. 

c7 = 1, 2, 3 )...) 15, are chosen in our computation. The numerical results are plotted in 
Figs. 4-10. The maximum norms of k*(x, y) - k,(x, y) and k*(x, y) - k,(x, y) for all 
cases can be estimated from the graphs in these figures. The L, norms, I,, = 
Ilk*(%Y) - k,(X,Y)ll*9 n = 0, N, for all cases are tabulated in Table I. 

Here the numerical results in Figs. 4-10 are not the best available ones because the 
iteration procedure will stop as soon as A,,+, zz 11 k, + , - k,)I, Q 0.05 (0.05 or smaller 
in A, will make very little difference in plotting the numerical results). Then 
k,,,(x, u) E k,, ,(x, y). From our past and present experience, all the Z,,‘s in our 
numerical simulation for one-parameter inverse problems are monotonic decreasing 
functions of n when n is in the practical range, say 0 < n < 15 or more. For reasons 
of economy, the In’s are computed only for two simpler and smaller examples and 
their results are plotted in Fig. 11. 

TABLE I 

Fig. #: 4 5 6 I 8 9 10 

N: 3 3 3 5 6 5 5 

I,: 2.32 4.47 5.40 2.12 3.50 2.50 2.50 

I,: 0.58 2.03 2.32 0.15 1.47 0.28 0.30 
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&------ 2 4 6 8 10 N 

FIG. 11. The I,‘s as functions of N, N= 1, 2,..., 10, shown for the example in Fig. 7 (-) and the 
example in Fig. 8 (---). 

DISCUSSION 

Although only a small number of computational zones (both in R and s) are used 
in the numerical simulation here, the numerical results in Figs. 4-10 have 
demonstrated that the PST iterative numerical algorithm does give good results in 
solving two-dimensional inverse problems of the linear wave equation and it is as 
robust as for the one-dimensional case [ 1,2,3]. The accuracy of the numerical 
algorithm can be improved greatly if a larger number of computational zones in ft 
are used; more efforts are made in computing each individual step and in 
discretization of the partial differential equations and the integral equations in the 
numerical algorithm; and a larger number of s,‘s are used and their values are 
properly chosen in solving the Fredholm integral equation of the first kind. Of course, 
it is counterproductive for one to increase overwhelmingly the number of 
computational zones in LI, for it is well known that this will make the discretized 
version of the Fredholm integral equation of the first kind (18) more ill conditioned. 

Mathematically, the inverse problem is a nonlinear problem regardless of whether 
the original partial differential equation is linear or not. Hence in general the solution 
of an inverse problem with a minimum number of constraints is not unique. To be 
sure, the PST iterative numerical algorithm is not a method for settling the question 
of the uniqueness of the solution of an inverse problem. This approximate solution is 
unique in the sense of being the closest one to the initial guess in the L, norm. 
Moreover, it is clear from our numerical simulation that for different initial guesses 
k&y), the iterations converge to slightly different k,,,(x, y))s. However, if this 
numerical algorithm is reasonably robust, then any one of the approximate solutions 
will be an acceptable approximation. This numerical computation phenomenon can 
be attributed to the accumulation of those nonnegligible errors in computing each 
iterate. Here, most of these computational errors come from the regularization 
procedure in solving the ill-posed Fredholm integral equation of the first kind. 

The PST iterative numerical algorithm can be extended to solve three-dimensional 
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inverse problems in a straightforward manner because the finite difference method or 
the finite element method is j&t as adaptable to solve any three-dimensional 
boundary value problem with arbitrary finite domain as to solve the two-dimensional 
boundary value problem, and Tikhonov’s regularization method is also as adaptable 
to solve the three-dimensional Fredholm integral equation of the first kind as to solve 
the two-dimensional case. Moreover, since the synthesis procedure is carried out in 
the frequency domain where the governing equation is an elliptic partial differential 
equation coming either from the Laplace transformed hyperbolic equation or the 
Laplace transformed parabolic equation, the PST iterative numerical algorithm can 
be used to solve inverse problems of both hyperbolic and parabolic partial differential 
equations with trivial changes in the computer code of PST. Hence PST fares very 
well in regard to the universality criterion. 

As it has been demonstrated in the previous sections, the measurement data are 
needed only at a portion of the boundary to solve two-dimensional inverse problems 
of the linear wave equation successfully. Hence the PST fares very well in regard to 
the economy of data acquisition criterion in comparison with other possible methods 
where measurement data are needed in the whole interior. 

The programming for the PST is basically nondedicated because the changeover 
from solving the inverse problems of a class of hyperbolic partial differential 
equations to solving the inverse problems of a class of parabolic partial differential 
equations is simply a matter of changing a few coefficients (changing a few cards) in 
the elliptic equation solver. Moreover, one does not have to program a subroutine for 
the elliptic equation solver, for there is an abundance of finite difference and finite 
element computer codes for solving two- or three-dimensional elliptic partial 
differential equations available in the public domain. Hence the PST again fares very 
well in regard to the economy of programming effort criterion. 

Finally, it seems also to fare rather well in regard to the economy of computing 
cost criterion. However, the actual computing costs depend very much on the 
particular computer hardwares and softwares, and one cannot be sure of this until a 
benchmark comparison test is performed. 

Efforts in carrying out the generalization of the PST iterative numerical algorithm 
to solve two- and three-dimensional inverse problems of a system of coupled linear 
wave equations are under way and their results will be reported in the near future. 
Furthermore, the PST iterative numerical algorithm also can be generalized to 
determine several unknown coefficients of a system of partial differential equations 
simultaneously, and similar efforts have also been started. 
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